281 research outputs found

    The potential use of the linear depolarization ratio to distinguish between convective and stratiform rainfall to improve radar rain-rate estimates

    Get PDF
    A major source of errors in radar-derived quantitative precipitation estimates is the inhomogeneous nature of the vertical reflectivity profile (VPR). Operational radars generally scan in azimuth at constant elevation (PPI mode) and provide limited VPR information, so predetermined VPR shapes with limited degrees of freedom are needed to correct for the VPR in real time. Typical stratiform VPRs have a sharp peak below the 0° isotherm, known as the “bright band,” caused by the presence of large melting snowflakes, but this feature is not present in convective cores where the melting ice is in the form of graupel or compact ice. Inappropriate correction assuming a brightband VPR can lead to underestimation of rain rates, with particular impacts in intense convective storms. This paper proposes the use of high values of linear depolarization ratio (LDR) measurements to confirm the presence of large melting snowflakes and lower values for melting graupel or high-density ice as a prerequisite to selecting a suitable profile shape for VPR correction. Using a climatologically representative dataset of short-range, high-resolution C-band vertical profiles, the peak value of the LDR in the melting layer is shown to have robust skill in identifying VPRs without bright band, with the “best” performance at a threshold of −20 dB. Further work is proposed to apply this result to improving corrections for VPR at longer range, where the limited effect of beam broadening on LDR peaks could provide advantages over other available methods

    The potential of 1 h refractivity changes from an operational C-band magnetron-based radar for numerical weather prediction validation and data assimilation

    Get PDF
    Refractivity changes (ΔN) derived from radar ground clutter returns serve as a proxy for near-surface humidity changes (1 N unit ≡ 1% relative humidity at 20 °C). Previous studies have indicated that better humidity observations should improve forecasts of convection initiation. A preliminary assessment of the potential of refractivity retrievals from an operational magnetron-based C-band radar is presented. The increased phase noise at shorter wavelengths, exacerbated by the unknown position of the target within the 300 m gate, make it difficult to obtain absolute refractivity values, so we consider the information in 1 h changes. These have been derived to a range of 30 km with a spatial resolution of ∼4 km; the consistency of the individual estimates (within each 4 km × 4 km area) indicates that ΔN errors are about 1 N unit, in agreement with in situ observations. Measurements from an instrumented tower on summer days show that the 1 h refractivity changes up to a height of 100 m remain well correlated with near-surface values. The analysis of refractivity as represented in the operational Met Office Unified Model at 1.5, 4 and 12 km grid lengths demonstrates that, as model resolution increases, the spatial scales of the refractivity structures improve. It is shown that the magnitude of refractivity changes is progressively underestimated at larger grid lengths during summer. However, the daily time series of 1 h refractivity changes reveal that, whereas the radar-derived values are very well correlated with the in situ observations, the high-resolution model runs have little skill in getting the right values of ΔN in the right place at the right time. This suggests that the assimilation of these radar refractivity observations could benefit forecasts of the initiation of convection

    High-precision measurements of the co-polar correlation coefficient: non-Gaussian errors and retrieval of the dispersion parameter µ in rainfall

    Get PDF
    The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed

    A robust automated technique for operational calibration of ceilometers using the integrated backscatter from totally attenuating liquid clouds

    Get PDF
    A simple and robust method for calibrating ceilometers has been tested in an operational environment demonstrating that the calibrations are stable to better than ± 5 % over a period of a year. The method relies on using the integrated backscatter (B) from liquid clouds that totally extinguish the ceilometer signal; B is inversely proportional to the lidar ratio (S) of the backscatter to the extinction for cloud droplets. The calibration technique involves scaling the observed backscatter so that B matches the predicted value for S of 18.8 ± 0.8 sr for cloud droplets, at ceilometer wavelengths. For accurate calibration, care must be taken to exclude any profiles having targets with different values of S, such as drizzle drops and aerosol particles, profiles that do not totally extinguish the ceilometer signal, profiles with low cloud bases that saturate the receiver, and any profiles where the window transmission or the lidar pulse energy is low. A range dependent multiple scattering correction that depends on the ceilometer optics should be applied to the profile. A simple correction for water vapour attenuation for ceilometers operating at around 910 nm wavelength is applied to the signal using the vapour profiles from a forecast analysis. For a generic ceilometer in the UK the 90-day running mean of the calibration coefficient over a period of 20 months is constant to within 3 % with no detectable annual cycle, thus confirming the validity of the humidity and multiple scattering correction. For Gibraltar, where cloud cover is less prevalent than in the UK, the 90-day running mean calibration coefficient was constant to within 4 %. The more sensitive ceilometer model operating at 1064 nm is unaffected by water vapour attenuation but is more prone to saturation in liquid clouds. We show that reliable calibration is still possible, provided the clouds used are above a certain altitude. The threshold is instrument dependent but is typically around 2 km. We also identify a characteristic signature of saturation, and remove any profiles with this signature. Despite the more restricted sample of cloud profiles, a robust calibration is readily achieved, and, in the UK, the running mean 90-day calibration coefficients varied by about 4 % over a period of one year. The consistency of profiles observed by nine pairs of co-located ceilometers in the UK Met Office network operating at around 910 nm and 1064 nm provided independent validation of the calibration technique. EUMETNET is currently networking 700 European ceilometers so they can provide ceilometer profiles in near real time to European weather forecast centres and has adopted the cloud calibration technique described in this paper for ceilometers with a wavelength of around 910 nm

    Infall, the Butcher-Oemler Effect, and the Descendants of Blue Cluster Galaxies at z~0.6

    Full text link
    Using wide-field HST/WFPC2 imaging and extensive Keck/LRIS spectroscopy, we present a detailed study of the galaxy populations in MS2053--04, a massive, X-ray luminous cluster at z=0.5866. Analysis of 149 confirmed cluster members shows that MS2053 is composed of two structures that are gravitationally bound to each other; their respective velocity dispersions are 865 km/s (113 members) and 282 km/s (36 members). MS2053's total dynamical mass is 1.2x10^15 Msun. MS2053 is a classic Butcher-Oemler cluster with a high fraction of blue members (24%) and an even higher fraction of star-forming members (44%), as determined from their [OII] emission. The number fraction of blue/star-forming galaxies is much higher in the infalling structure than in the main cluster. This result is the most direct evidence to date that the Butcher-Oemler effect is linked to galaxy infall. In terms of their colors, luminosities, estimated internal velocity dispersions, and [OII] equivalent widths, the infalling galaxies are indistinguishable from the field population. MS2053's deficit of S0 galaxies combined with its overabundance of blue spirals implies that many of these late-types will evolve into S0 members. The properties of the blue cluster members in both the main cluster and infalling structure indicate they will evolve into low mass, L<L* galaxies with extended star formation histories like that of low mass S0's in Coma. Our observations show that most of MS2053's blue cluster members, and ultimately most of its low mass S0's, originate in the field. Finally, we measure the redshift of the giant arc in MS2053 to be z=3.1462; this object is one in only a small set of known strongly lensed galaxies at z>3.Comment: Accepted by ApJ. Version with full resolution figures available at http://www.exp-astro.phys.ethz.ch/tran/outgoing/ms2053.ps.g

    Characterization of surface radar cross sections at W-band at moderate incidence angles

    Get PDF
    This paper presents the results of a recent flight campaign conducted over the Great Lakes region and reports the first observations of the W-band normalized backscattered cross section ( σ0 ) for V and H polarization and the linear depolarization ratios (LDRs) from different types of surfaces at moderate incidence angles (<70°). For sea surfaces, while the observed σ0 behaves as previously reported at small incidence angles, it features a marked decrease with increasing incidence angles between 20° and 50°. There is a strong dependence of normalized backscattered cross sections both on the wind speed and on the wind direction, with larger values found in the presence of higher wind speeds and when the radar antenna is looking upwind. This is in line with theoretical models (though models tend to overpredict the range of variability at a given incidence angle) and with observations at lower frequencies. The LDRs are steadily increasing from values certainly lower than −30 dB, at vertical incidence, to the values of about −10 dB, at the incidence angles of about 60°–70°, with a good matching between observations and theoretical predictions. On the other hand, land surface backscattering properties are not characterized by a strong angular dependence: σ0 and LDR values typically range between −20 and 0 dB and between −15 and −5 dB, respectively. This paper is relevant for spaceborne concepts of W-band radars, which envisage moderate incidence angles to achieve a broad swath needed for global coverage

    End to end simulator for the WIVERN W-band Doppler conically scanning spaceborne radar

    Get PDF
    The WIVERN (WInd VElocity Radar Nephoscope) mission, soon entering in Phase-0 of the ESA Earth Explorer program, promises to complement Doppler wind lidar by globally observing, for the first time, vertical profiles of winds in cloudy areas. This work describes an end to end simulator of the WIVERN conically scanning 94 GHz Doppler radar, the only payload of the mission. Specific features of the simulator are: the conically scanning geometry; the inclusion of cross-polarization effects and of the simulation of a radiometric mode; the applicability to global cloud model outputs via an orbital model; the incorporation of a mispointing model accounting for thermo-elastic distortions, microvibrations, startrackers uncertainties, etc.; the inclusion of the surface clutter. Some of the simulator capabilities are showcased for a case study involving a full rotational scan of the instrument. The simulator represents a very useful tool for studying the performances of the WIVERN concept and possible trade-offs for the different configurations (e.g. different antenna sizes, pulse lengths, antenna patterns, . . . ). Thanks to its modular structure the simulator can be easily adapted to different orbits, different scanning geometries and different frequencie

    Exploiting existing ground-based remote sensing networks to improve high-resolution weather forecasts

    Get PDF
    A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented

    A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements

    Get PDF
    A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations
    corecore